Collective Classification Using Heterogeneous Classifiers
نویسندگان
چکیده
Collective classification algorithms have been used to improve classification performance when network training data with content, link and label information and test data with content and link information are available. Collective classification algorithms use a base classifier which is trained on training content and link data. The base classifier inputs usually consist of the content vector concatenated with an aggregation vector of neighborhood class information. In this paper, instead of using a single base classifier, we propose using different types of base classifiers for content and link. We then combine the content and link classifier outputs using different classifier combination methods. Our experiments show that using heterogeneous classifiers for link and content classification and combining their outputs gives accuracies as good as collective classification. Our method can also be extended to collective classification scenarios with multiple types of content and link.
منابع مشابه
Improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملHeterogeneous Ensemble Classification
The problem of multi-class classification is explored using heterogeneous ensemble classifiers. Heterogeneous ensembles classifiers are defined as ensembles, or sets, of classifier models created using more than one type of classification algorithm. For example, the outputs of decision tree classifiers could be combined with the outputs of support vector machines (SVM) to create a heterogeneous...
متن کاملCollective Document Classification with Implicit Inter-document Semantic Relationships
This paper addresses the question of how document classifiers can exploit implicit information about document similarity to improve document classifier accuracy. We infer document similarity using simple n-gram overlap, and demonstrate that this improves overall document classification performance over two datasets. As part of this, we find that collective classification based on simple iterati...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011